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ABSTRACT

This study examines the feasibility of identifying the dynamic parameters of

autonomous land vehicles. Initially a simulation study is done using a simplified

vehicle model and three different identification schemes. The parameter estimator

which has the best characteristics is then used on an improved model to

determine if this approach can be used to obtain the parameters of multi-wheeled

vehicles.
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I. INTRODUCTION

A. INTRODUCTION

In recent years the concept of autonomous vehicles has become a reality.

Martin Marietta Corp. has built an autonomous wheeled vehicle [Ref. l]. FMC

Corporation is developing a tracked autonomous vehicle [Ref. 2]. Ohio State

University is constructing a six legged vehicle [Ref. 3].

As autonomous vehicles progress it will become necessary for them to identify

their own dynamic parameters in order to operate effectively. This will allow the

vehicle to identify its mass and other characteristics and determine if it can

operate within the envelope for which it was designed. This would also enable the

vehicle to continuously monitor its parameters and identify maintenance problems

or other potential problems and take the necessary steps to prevent damage to

itself. This capability would give the vehicle what all natural autonomous

systems have, the ability to "feel" their own dynamic parameters.

B. PROBLEM STATEMENT

The objective of this thesis is to determine the feasibility of using parameter

identification techniques to identify the dynamic parameters of an autonomous

vehicle, on line, and to monitor variations in those parameters during operation.

The term on-line in this case means, while operating normally. The desire here is
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to allow the vehicle to passively identify its parameters without the need to

actively participate in developing inputs specifically selected for identification.

In this thesis, continuous time parameters will be identified. This will increase

the hardware requirements, but will allow for certain other desirable features

required for multi-wheeled vehicles. Thus, the problem of this thesis is to

passively identify and track the continuous time dynamic parameters of a wheeled

vehicle.

C. APPROACH

The number of different parameter identification techniques available is

extensive, but many of the approaches are similar. Two major distinction are, the

ability to identify nonlinear systems, and to allow stochastic inputs. The work of

this thesis is directed toward problems solvable by stochastic linear identifiers.

Here, three approaches will be considered in detail. First each technique will be

presented mathematically and then used in a simulation study to analyze their

respective characteristics. A simplified vehicle model will be used for this purpose.

The scheme found to have the most desirable properties will then be used to

identify the parameters of a more realistic model. This will determine if the

approach is valid for the identification of wheeled vehicles. From these results, the

feasibility of identifying and tracking the vehicle parameters will be considered.

8
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D. LIMITATIONS

In the development of a simulation study some assumptions must necessarily

be made. In this thesis, it will be assumed that the input from the road is white

noise. In addition, it will be assumed that position, velocity, and acceleration are

available for the vehicle's body and all of its wheels.

E. STARTING POINT

The field of parameter identification is well developed. The standard

approach to parameter estimation is with respect to scalar discrete time systems.

In this analysis a multi-input multi-output continuous-time parameter identifier is

used. This will require certain changes to the standard algorithms used in the

literature.

F. ORGANIZATION

The mathematical development of the three identification schemes will be

presented in the next chapter. In the following three chapters, each approach will

be analyzed using a simulation study on a simplified model that is presented in

Chapter III. In Chapter VI. the technique which demonstrated the best

characteristic during the simulation study will be used on an improved model

developed in that chapter. Chapter VII will present the concluding remarks

concerning the feasibility of this from of parameter identification when used on

land vehicles.

9
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G. NOTATION

The notational convention used in this thesis conforms to the standard used

in the literature. Capital letter denote matrices, as in P(k), where P is a discrete-

time varying matrix. Lower case letter denote scalars or vectors. In most cases,

this will be clear from the context and the dimensionality of the equation. Thus.

v(t) is a continuous time variable, and in this case would be described in the text

as a vector of dimension n. The transpose of a vector or matrix is denoted by a

superscript T. An element of either a vector or matrix is shown with a

subscripted number. For example, the element of the third row. second column of

the A matrix is shown by a,r If a matrix is made by concatenating a sequence of

matrices, then it is bold faced. This is also true for vectors, and therefore the

vector \(t) is made by concatenating several v(t) vectors together. This notation

sets the stage for the next chapter where each technique is mathematically

presented.

10
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II. SURVEY OF PREVIOUS WORK

A. INTRODUCTION

Parameter identification has received much attention, and is frequently used

in modern aerospace vehicle control[Ref. 4:p. 32]. There are numerous approaches

to this identification problem, only a few of which will be mentioned here. Many

of these techniques have several names and can be applied in different situations

with only slight changes to. the algorithm. This discussion will be confined to

three well-defined approaches that have been used on several different types of

problems with good results. These techniques are: least-squares approximation,

Kalman filter identifiers or minimum-variance estimation, and stochastic gradient

parameter estimation or stochastic approximation. In this chapter, each

technique for parameter identification will be presented. This will establish the

mathematical notation to be used in the rest of this thesis and will make the

limitations of each approach more transparent. In the following chapters each

scheme will then be presented in the context of a simplified vehicle parameter

identification simulation, which will allow comparison of the various techniques.

B. LEAST-SQUARES APPROXIMATION

The most straightforward parameter identification technique is the least-

squares approximation approach. Thus, its mathematical development provides a

11



www.manaraa.com

good starting point for the discussion of this chapter. Mendel [Ref. 4:pp. 5-20]

has established a notation, particularly suited to the analysis of different

parameter identifiers and his notation shall, as much as possible, be used here.

Following this notation, let the linear system with unknown constant parameters

be defined by

i(t) = Ax(t) + Bu(t) (2.1)

where the elements of the A and B matrices are unknown, but the state vector

x(t). of dimension n, is available either by direct measurement or signal

estimation. The input vector u(t) will for the present be 0. This continuous time

system is then measured at discrete time intervals t
k ,

k=0,1.2 The discrete

time measurements produce a state vector x{t
k )

and its derivative i(t
k ) at time t

k
.

These vectors will be denoted as x(k) and x(k) for notational convenience.

A word of caution is in order here, for the techniques presented in this thesis

do not conform to the standard usage of discrete time systems. Here, the use of

the state vector and its derivative will produce an asynchronous identifier. The

asynchronous identifier is not subject to the same timing constraints as its

synchronous counterpart. In the asynchronous case, the continuous time

parameters can be obtained with no restriction on the time between samples. This

arbitrary selection of the sample interval will be important in the elimination of

input-output crosscorrelation in Chapter VI. The derivations presented here are

inspired by, but not identical to the work of Mendel, who describes the single-

input single-output discrete time identifiers discussed here. As a specific example,

12
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consider the identification of a system with a bandwidth of 100 rad/sec. In order

to preserve the output signal and prevent aliasing, such a signal would normally

be sampled at perhaps 3 times its highest frequency, or 48 samples per second.

This would require the processing of one sample every 0.02 seconds. For some

identification schemes this may not be a limitation, but for many recursive

algorithms this would be a constraint. In the asynchronous identifier proposed

here there are no timing constraints, except those imposed on data acquisition.

The requirement on data acquisition is simply that the measurement of x(k) and

x(k) must be taken at the same instant. This requirement is quite easily handled

with a few data buffers and analog to digital converters.

If the parameter vector

llV fl 12> • • >
Qnn-V a

nn) (2.2)

is formed from the matrix A. and if the matrix H(k) is defined as

H[k)

(x^x^k) . . .z
n
(k) 0...0 ...

•
• ziWx 2

{k) . . . xn (k) o • •

(2.3)

• • *,(*) • • • x^kjxjkj!

then the system can be described using the parameter vector 6 as

x(k) = H{k)0 (2.4)

Now if x and x can be measured perfectly, then in n measurements of the state

vector and its derivative, 6 can be determined from

13
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/
i(«-lX , H(n-l)

x(n-2) H(n-2)

V

x(0) H(0)

Specifically, if

(2.5)

x =
( /(n-l), x

T
(n-2), i* [0) )

T

an<

H =
( H

T
(n-l), H T

(n-2), . . . , H ?
(0) )

r

then

* = H x

(2.6)

(2.7)

(2.8)

This case corresponds to the minimum number of measurements needed to obtain

a unique solution for 6.

However, if i is contaminated with noise then the measured quantity will be

Z = 1+ V (2.9)

or

z = H0 + v (2.10)

The vectors v and z are of dimension / and v is assumed to be zero mean gaussian

white noise, with variance R, or [N(0,R)]. Here / is some multiple of n, giving

redundant measurements. The requirement for redundant measurements is a

result of the uncertainty of the derivative of the state vector i, due to

measurement noise v.

To minimize the distance between 6, the parameter vector and 9 the estimated

parameter vector, a cost function is defined as [Ref. 5:p. 24]

14
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J = (z - H9)
T
(z - HO) (2.11

If J is minimized, then

dJ— = q (2.12)
d0

thus

H r
H5 = H r

z (2.13)

or

^=(H r
H)

_1H r
z (2.14)

The estimate will be unbiased if v and H are statistically independent. This

is easily seen if one takes the expectation of the previous equation. That is,

E\0\ = £i(H
7

'H)"
1H T

(H^ - v)] (2.15)

or

E\0) = E\6] + (H
r
H)

_1H r
£;[v] = (2.16)

where the second term in the above equation vanishes because the vector v was

assumed to be zero mean.

Mathematically, the result of Equation 2.16 is quite nice; however in

practice the x vector will also be contaminated with noise. Thus, it is appropriate

to define a new vector r as,

r(k) = x{k) + w{k), w{k)'N(0,Q) (2.17)

so that

15
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/
'('-I*

H
r
(l-l)

z(l-2)

=

H
r
(l-2)

U ln\ '

(2.18)

where

t

ri (k)r 2
(k) . . . rjk)0 ...0 ... Q

o o •
• • o r A k

)
r2( k )

r„(*)o • -o o

H
f
(k): (2.19)

.-.0 r
t
{k) • • • r

B _ 1
(A)r„(*)'

Clearly, in this case, H
r
and v are not statistically independent since,

V
2
=t;

2 - ^l^l -^^2^2 -
" • • -*:. 1",

(2.20)

This correlation between H and v will almost certainly produce a biased

estimation of* [Ref. 4:pp. 132-33].

At this point several characteristics of this identification technique are

apparent. This is a batch processing approach, which means that all of the data,

that is z and H. must be stored in memory before the procedure can begin. With

the current availability of low-cost large-volume memory this may not be a

problem. However, it also requires the multiplication of two n x/ matrices, which

is fairly computationally intensive, because / is very large. Again, technology may

have reached the level where this is not a severe difficulty. Finally, the bias on the

parameter estimates due to the state measurement noise must be determined, and

its impact on the control of the autonomous system considered.

16
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C. KALMAN FILTER IDENTIFIER

The Kalman filter is used to obtain the minimum-variance estimates of

signals from noisy measurements recursively; i.e. in real time. It is assumed that

the reader has a general knowledge of Kalman filter theory, which has received

widespread attention in the literature. [Ref. 5]

For a system described as

x(Jfc+l) = ${k+l,k)z(k) + Lu{k) (2.21)

z(k+l) = H{k+l)x{k+l) - v{k+l) (2.22)

where u and v are gaussian random variables with zero mean and variances of Q

and R. respectively, it can be shown [Ref. 5:pp. 102-11] that the optimal estimate

of x{k). denoted £(k) is recursively obtained by

f(Jb+l| k) = ${k+l,k)x[k\ k) - Lu[k) (2.23)

x(k+l\ jfc+l)=f(ib+l| Jb) + G(Jb+l)[«(Jb+l) -#(ife+l)£(*+l| it) (2.24)

The G(k + l) matrix is the Kalman gain matrix and is defined as

G[k+1) = P(Jt+lj k)H
T
{k + l)\H(k^l)P(k + l)H

T
(k^l) + ^(it + l)!"

1

(2.25)

where P(k^l\ k) is the estimation error covariance matrix of (r-£) defined by

P(ib+l| k) = <t>(k^l.k)P(k\ k)$
T
(k^l,k) + LQL

T
(2.26)

and

P(Jfc + l| Jb+1) = [/-<7(Jfc+l)#(Jb+l)]i>(Jt+l| k) (2.27)

If the output error vector given by

c(k+l) = z(k+l) - H(k + l)£{k+l\ k) (2.28)

which is the quantity multiplied by G(k + l) in Equation 2.24, is compared with

17
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Equation 2.22 rewritten as.

v{k+l) = z{k+l) - tf(Jb+l)£(A+l) (2.29)

then as f-x, e — v.

In order to transform the state estimation Kalman filter into a parameter

identifier, the system defined in Section 2.B as

x{k) = Az(k) + Bu(k) (2.30)

where u is again set to zero, is changed to

e(k-i) = e{k) (2.31)

and from Equations 2.4 and 2.9

z(k) = x(k) ~ v(k) = H(k)6 + v(k) (2.32)

Here v ~\N(0,R)\ is the state derivative measurement noise. The forward estimation

of the parameter vector in Equation 2.23 is now changed to an identity

equation, since intuitively we wish

0{k\ k-l) = 0{k-\\ k-l) (2.33)

for a time invariant system. Thus ${k + l,k) = I, the identity matrix, and the

present estimate becomes

6{k k) = 6{k k-l) + G(k)\z{k) - H{k)9{k\ k-\)\ (2.34)

Examining again the error vector e. now given as

e(jfc) = z(k) - H{k)0{k\k-1) (2.38)

and Equations 2.28 and 2.29. here rewritten as

v{k) = z{k) - H{k)0 (2.39)

shows that as 0-0, e-v. Since E[v] = 0, then will be an unbiased estimate of 0.

18
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From the above analysis and definitions, the equations for the Kalman gain

matrix of the parameter identifier are

G(k) = P(k\ k~l)H
T
{k)\H{k)P{ki k-l)H

T
{k) + Rik)}'

1

(2.40)

where P(k\ k-1) is now defined as

P(k\k-l) = P(*-l|*-l) (2.41)

and

P(k\ k) = [1 - G{k)H{k)}P(k\ k-l) (2.42)

and R is the covariance matrix of v. This identifier is recursive, but suffers from

the same limitation that the least-squares approach exhibited. Namely, the

Kalman filter identifier does not eliminate the bias produced by state

measurement noise. For this reason the stochastic gradient approach of the next

section is considered, since theoretically it will eliminate the bias caused by state

measurement noise.

D. STOCHASTIC GRADIENT ESTIMATION

The stochastic gradient approach is a recursive identifier and therefore has a

common structure with other recursive parameter identification schemes. The

structure is

new estimation = old estimation + gain matrix x error (2.43)

. To begin, consider again the system described using the parameter vector 6

given as

x(k) = H[k)6 + v
d
{k) (2.44)

where the measurement of x{k) is further contaminated with noise as in

19
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z{k) - i(k) - vjk) (2.45)

Thus there is an element of both disturbance and measurement noise corrupting

x(k). It is also assumed that the x{k) state vector cannot be measured perfectly so

that its measured value is

r(k) = x(k) + w(k)

making the contaminated H(k) matrix appear as

H
r
(k) = H(k) + N(k)

where

(2.46)

(2.47)

l
Wl (k)w 2

{k) . . . wn (k)0 ...0 ...

•
• • "'i^W*) • • •

u
'n(

fc )o •
• •

N(k) = (2.48)

o o ••o o o o o «,,(*) • • • w^Wwjky

The random variable w(k) is zero mean with variance Y, w and the variance of N(k)

is then

E[N(k)
T
N(k) =E N

The measurable value of i(k) is z(k) which is obtained from

z[k) = H{k)B + v{k)

where

(2.49)

(2.50)

v(k) = vd (k) + vjk)

However, the only available approximation of z(k), denoted z(k) is

£{k) = H,(k)0{k)

where in this case 9{k) is the kth estimation of 9.

(2.51)

(2.52)

20
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The error in the estimate of z(k) is

z(k) = z{k) - z{k) (2.53)

and if z(k) is to be minimized, then a cost function is established as

l T
J\6{k)\ = -S (k)z{k) (2.54)

2

It can easily be shown that the gradient of J\0{k)\ with respect to 6{k) is

V^ = - H*{k)z{k) (2.55)

This leads to the stochastic gradient algorithm

0(k^l) = 6(k) + R{k)H?{k)z(k) (2.56)

where R(k) is the gain matrix to be determined and / is the spacing parameter to

be chosen such that H[k) and H(k-l) are independent. In a continuous time

system, it will be assumed that 4 time constants of the system are enough to make

H(k) and H(k-l) independent. The reason for this requirement will be discussed

shortly.

Certainly an unbiased estimate of 6 is desirable. The nature of sequential

estimation is such that only asymptotic unbiasness is possible [Ref. 4:p. 233].

Looking closer at Equation 2.56 to determine the bias imposed by the estimation

process, the expectation of both sides is taken, giving

E\6{k + l)\ = E\6{k)\ + R{k)E\H?(k){H(k)0 + v{k) - H
r
{k)6(k)}\ (2.57)

- E[6(k)} - R(k){E\E\H*(k)H
r
(k)\9(k)}0(k)\

-E\E\H*(k)v(k)\6(k)\]

-E\E\H
r
(k)H{k)e\0(k)\}}

where it has been implicitly assumed that R(k) is independent of H
r
{k) and 0(k).

21
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Examining each term of Equation 2.57 to determine its effect on the estimate of

6 will demonstrate the source of the bias. The first term multiplied by R(k) is

dissected, taking the inner expectation giving [Ref. 4:p. 233-42]

E\Hj(k)H
r
{k)\6(k)\ = E\{H

T
{k)H{k) + H T

{k)N(k) + \(k)H(k) + N T
(k)N{k)}\ 8(k)\ (2.58)

= n H + E N (2.59)

or

E[E\H*{k)H
r
[k)\ *(*)]!(*)] = {n H + Z N }E\6(k)\ (2.60)

Here the independence of H(k) and H(k-l) has been used to assure that

E\H
T
(k)H(k)\0(k)} = E[H

T
(k)H(k)}=n H (2.61)

In a like manner it can be shown that

E\E[H*(k)v{k)\6{k)}} = E\H
T
(k)v{k)\ (2.62)

and

E\E\H?(k)H(k)9\ 0{k)\\ = n H 6 (2.63)

Then rewriting Equation 2.57 gives

E\6(k + l)\ - E\6[k)\ - R{k){(U H + E N )E\6(k)} + E\H
T
(k)v(k)} + Vl h 6} (2.64)

Clearly, the steady state solution should be

lim^
oo £j0(* + /)] = E\0(k)\ (2.65)

thus

(n H + sjiim^^^t)! = E[#
r
(*)«>(*)] - n„* (2.66)

or

^k^E[0(k)} = (n
fl
+ E^r'i^t*).^)] + n^} (2.67)

Notice that if

22
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EA
. = E\H

T
{k)v[k) = (2.68)

then

lim^*£(*(*)] = n~HV H e = * (2.69)

Unfortunately, in the final system analyzed here both 5^ and E\H (k) v(k)
i

will be

non-zero.

To obtain an unbiased estimate in the system of interest it will be necessary

to remove the biasing terms from Equation 2.64 . More specifically, the new

algorithm will be

6(k+l) = \I+R{k)^
n
}9{k) + R{k)H

T

r
{k)'z{k) - R(k)E[H

T
(k)v(k)} (2.70)

The term E\H (k)v(k)} is not available, but assume that it is a linear function of 6

as in

E\H
T
{k)v{k)\ = A + MB (2.71)

However, since 6 is unknown, this equation can only be estimated as

A = A + M6 (2.72)

where A and M are application dependent and must be calculated prior to

implementation.

The choice of R(k) remains to be determined. Extensive analysis of the

selection of R(k) has been presented in the literature. [Ref. 4:pp. 193-210] [Ref. 6:pp.

42-51] In this section two choices for the gain matrix R(k) will be stated as

presented in [Ref. 4:pp. 193-203, 242-251].

Using Lyapunov's Main Stability Theorem, it can be shown that the

Lyapunov- optimum weighting matrix is
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diag :/«,(*), h
2
(k) h

t[k)

«,.(*) = for 3 = 1.2,

e.-iM*K(*)

Note here that i? (Ar ) is now correlated with H(k).

Using Venter's theorem and its conditions for convergence, the R(k) matrix

becomes

l l

R(k) = diaglh^k), h
2
(k), . . ., hn {k)\ for ~<pO (2.74)

k
P 2

where in both cases h
{
(k) must conform to

0< h
L
^h

t
(k)-^h u <oo (

2 - 75
)

for i=l, 2, . . ., n , and all k^O.

Although Equation 2.74 is somewhat simpler to compute, this advantage is

more than offset by its slower convergence. It has been suggested that because of

the faster convergence of Equation 2.73 then for k^k' use [Ref. 4:p 268]

diag\h,{k), h
2
{k) hjk)\

R(k) = (2.76)

CiM*K
2

(*)

and. for k > k ' . use

R(k) = —diaglh^k), h
2
(k), . . ., h

n
(k)\ (2.77)

k"

where k' can be chosen quite arbitrarily.

E. SUMMARY

The parameter identification techniques described here are but three of the

most well known and in no way span the variety of identification schemes. In fact

the first two parameter estimator described here are very closely related. While
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the Kalman filter and least squares approach look quite different, the Kalman

filter is in fact the recursive form of the weighted least squares algorithm [Ref 6:p.

20].

The Kalman filter and the stochastic gradient approaches are related in that

they are both recursive. This gives them the same structure as described in

Equation 2.43 , from this perspective, the stochastic gradient approach described

here uses the simplest possible choice for the gain matrix while the Kalman filter

uses a much more sophisticated choice.
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III. LEAST-SQUARES IDENTIFIER

A. INTRODUCTION

In this chapter a simulation study will be done using the least-squares

identification approach. The purpose of the study is to determine the capabilities

and limitations of the least-squares approach, with regard to various forms of

input noise.

Recall from Chapter II that the state derivative measurement was given by

z = H0 + v (3.1)

and that 6 was then determined by

6 = (H
rHf 1H r

z (3.2)

In this chapter the possibility of input disturbance noise. u(t), will be included as

well as the state measurement noise. w(t). These additional sources of noise will

produce the new relations

z = m - v + Bu (3.3)

and

6 = (H
r

rH
rr'H r

r
z (3.4)

where B is defined as

26



www.manaraa.com

500-0
50-0
005 • • (3.5)

000 B

In this equation, 5 is as denned in Equation 2.1. and is a zero matrix of

appropriate dimension. Recalling that the fcth noise corrupted state measurement

is denoted

r(k) = x{k) + w(k) (3.6)

while the corresponding noisy state derivative measurement is

z(k) = x(k) + v{k) (3.7)

it follows that Equations 3.3 and 3.4 reduce to Equations 3.1 and 3.2 when

u(t) and w(t) are not present.

This new set of equations will allow a realistic assessment of the accuracy of

the least-squares identification approach with various amounts of noise present in

both the measurements of the system and input from the road. These noise

sources will each be considered in detail and then in combination to examine their

overall effect on the estimation of the system parameters.

B. SIMPLIFIED MODEL FOR SIMULATION STUDY

. In preparation for a simulation study, it is necessary to define a simplified

model of a suspension system. A fourth order, two-degree-of-freedom system was

selected. This choice will provide a rich enough model to allow analysis of the

results obtained from the three identification techniques discussed in Chapter II.
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Consider the system depicted in Figure 3-1. The lower mass represents the

wheels and the upper mass is t e body. The equations of motion are

[HI - (fc, + fc
2
)Zj + ^2^2

— ^z
l
+ ^ z 2 "*" ^1 U (')

=

T. r
= — x„M — k

2
x

l
+ k

2
x
2
— bx

t
+ bx

2
i
i

which can be written in the state space form

x(t) = Ax(t) + Bu(t)

as

i(t)

1

-(fcj+fc
2 )

-6 fc
2

6
*i

m m m m
1

x(t) -

jfc

2
6 -k

2
-6

M M M AT

u(t)

where

x(t) =

*

1 (0

z (*)

I. (0

X.»(*)

L J

(3.8)

(3.9)

[3.10)

(3.11;

(3.12)

For the purpose of simulation. u(<), the input vector, will be gaussian noise of

zero mean. In order to obtain the five constants ( M,m,k
l
k
2
,b ) which make up the

parameters of the system, and arrive at a unique value for each constant, it will
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•oad

M

(body of vehicle)

m

(wheels)

A

Figure 3-1 Simplified vehicle
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be necessary to know one of the masse?- [M . m). a prion since one of the masses

appears in all of the parameter values.

To obtain the B matrix, from observation of the vehicle response only, it is

evidently necessary to be able to measure the input u(t). This will not be possible

for the system analyzed here, thus the value of the B matrix must be known

a priori. This requirement, though inconvenient, is not a serious complication

since the spring constant and mass of the wheels should be easily estimated from

experimentation on a relatively small element of the vehicle. This also fulfills the

requirement for having a value for one of the masses.

Starting with Equation 3.11. values were then chosen for the five constants in

the system to be used during the simulation study. The values, chosen to achieve

a reasonable time constant and damping coefficient, were :

M 10

m 1

*i
= 90

K
2

50

6 40

(3.13)

This produces a dominant time constant for the system of 1.4 sec, with poles at

-.727±>2.30

-1.90 (3.14)

-40.6 J

The units of the system constants are left arbitrary and must simply be

consistent.

30



www.manaraa.com

Finally, it will be assumed that, measurements of both the state x(k) and its

derivative x(k) are available, but are possibly corrupted by noise. Thus, there are

three sources of noise in the identification process: the input disturbance u(t), the

state measurement noise w(t), and the noise associated with the measurement of

the state derivative v(t).

In the remainder of this chapter the effects of these noise sources on the least

squares identifier shall be examined. The criterion for acceptable identification

will be when all parameters are within 10% of the actual value. Since the

parameters in the second and fourth rows of Equation 3.11 are the unknown

values, only their estimation error shall be considered, and the parameters of the

first and third rows will be assumed known, because of the structure of the plant.

C. INPUT DISTURBANCE AND INITIAL CONDITIONS

The effect of the input disturbance u(t) will be observed with and without

initial conditions. Here the initial conditions will be considered another form of

input to excite the system. The system shall be analyzed under three different

forms of excitation: first by initial conditions alone, then with white noise from

the road, and finally from a pulse input. The resulting parameter estimates will

be used to determine how best to excite the system to obtain acceptable

identification.

If initial conditions are the only form of excitation or noise in the system

then, as shown in Chapter II, in n measurements of the system the parameters
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can be found exactly. On the other hand, with no initial conditions and with

white noise input from the road, in the absence of other noise, the parameters of

the upper mass can be measured prefectly, but the lower mass parameter

estimates are significantly corrupted. Referring to Figure 3-1, this comes about

because the net force acting on the lower mass is a function of both the present

state and the unknown suspension system displacement from the road. The force

on the upper mass, however, is a function of only the present state which is

known exactly. Thus, with no measurement noise, the fourth line of Equation

3.11 is known exactly, while the second line is corrupted by unknown road noise

and the parameter can not be found precisely in a finite number of measurements.

However, combining Equations 2.14 and 3.3 gives

6 = (H
r
H) 'H

r
!H0 - v - Bu (3.15)

or taking the expected value

E\0\ = E\6) + (H
r
H)"'H

T
£:v + Bu] = 6 (3.16)

since both v and u are zero mean random processes. Therefore it is possible to

identify the parameters of the system with only road noise as excitation, but quite

impractical since, as experimental results in Chapter IV will show, matrices with

dimensions larger than 8 by 10,000 would be required.

Figure 3-2 shows a measure of the normalized mean square error of the

parameters, given by
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8
0, -*,(*)!

c = Vs* 2-1
(3.17)

For this curve, and throughout the remainder of this thesis, the response of

the continuous time system is obtained by numerical integration of the state

equations using a fourth order Runge-Kutta integration formula. The time

interval between samples of the resulting response is in every case 0.05 seconds.

On Figure 3-2, £k is shown for four different identification simulation runs,

each with the same standard deviations of input noise, for the case of white road

noise and no measurement error in x(k) or x(k). Thus, only the actual disturbance

ensembles are different. Note the large variance in the resulting identification.

This variance is quite undesirable, because of its inconsistent approximation

results. From the linearity of the state equation, it is expected that the size of o
u

has no effect on the accuracy of the parameter estimation process. This has been

verified by changing the scale factor on u(t) and observing from the simulation

that the parameters are uneffected. Also, since £k
is defined as in Equation 3.17,

then a necessary condition to obtain an acceptable estimate is

f/ina^0.08 (3.18)

That is, if the average parameter estimation errors do not exceed 10 percent, then

this condition must be satisfied. Examination of the four curves of Figure 3-2

shows that attainment of this accuracy is likely to require, on the average, many

times more than 500 iterations of the least squares procedure.
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Figure 3-2 Parameter estimation error vs. number of iterations for four

different ensembles of road noise.

Initial conditions, a = 0.1

Road noise, a = 0.1

State measurement noise, r = 0.0

State derivative measurement noise, a =0.0
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If both random initial conditions and white noise are applied to the vehicle,

the result is essentially that of the dominanT form of excitation. Figure 3-3

illustrates the relationship between £k
and the excitation of a

tc
and a

u
. From the

curves, the effect of various amounts of road noise for a given amount of initial

excitation can be seen. If the road noise is small, then the identifier can estimate

the parameters in just a few measurements. This is exhibited in the curve marked

by " + " symbols. As road noise increases, the identifier requires more

measurements before acceptable estimation is reached. In the curve marked by

squares, the identifier cannot reach a correct estimation within 500 measurements.

If more memory was available to store x(k) and i(k) then the estimation ought to

improve.

If a pulse of various widths is used to excite the system, then the parameter

estimates are less accurate than if initial conditions are used to excite the system.

When the pulse is input during only one measurement cycle, then so little energy

is imparted to the vehicle that the identifier is essentially trying to estimate the

parameters through the road noise and will require more than 125 measurements

to identify the parameters, as shown by the curve marked by squares. If pulses

wider than one measurement cycle are used then the system receives more energy,

but the input becomes correlated with the state, which as will be seen in Chapter

IV, produces a biased estimate. The other three curves in Figure 3-4 show pulse

widths of two, three and four measurement cycles. Thus, a pulse input does not

seen to improve the identification process.
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Figure 3-3 Parameter estimation error vs. number of iterations when four

different levels of road noise and constant initial conditions excite

the system.

Initial conditions, a = 0.3

Road noise, a = 0.2. 0.1. 0.05. 0.025

State measurement noise, c = 0.0

State derivative measurement noise, o =0.0
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Figure 3-4 Parameter estimation error when pulses of four different widths

are used to excite the system.

Initial conditions, a = 0.01

Road noise, a = 0.001

State measurement noise, a = 0.0

State derivative measurement noise, a =0.0
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D. STATE MEASUREMENT NOISE

The effect of state measurement noise on the least squares identifier is

devastating. Using only initial conditions to excite the system, which would in

the absence of noise produce exact results, the least squares identifier deteriorates

rapidly with small values of a
u

. the standard deviation of the state measurement

noise. This is as expected since the technique is based on an assumption of perfect

state measurements. Figure 3-5 shows the effect of varying o w on the normalized

mean square error of the estimated parameters. Since the excitation is the result

of initial conditions, which are diminishing with time, the error induced by a w

increases as the state vector magnitude decreases. Thus there is an optimum time

to extract the parameter at about 32 measurement intervals. The curve marked

by circles has a measurement error of 1 % of the initial conditions. Even this

small measurement noise standard deviation is too large to allow the estimator to

find the parameters. If a w is reduced to 0.59c of au then satisfactory results can be

expected, if the parameters are taken at about 32 measurements. This is quite a

constraint on the measurement equipment for x(k).

E. STATE DERIVATIVE MEASUREMENT NOISE

Using initial conditions to excite the system, the analysis of the effects of <t
c

.

the standard deviation of the state derivative measurement noise, will be carried

out by varying a
v
until £k

falls below the required value of .08. Figure 3-6 shows

that if <7
t

,

is 20% of au then acceptable results can be expected. The same noise
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Figure 3-5 Parameter estimation error vs. number of iterations when four

different levels of state measurement noise are applied.

Initial conditions, a = 0.1

Road noise, a = 0.0

State measurement noise, a = 0.0005, 0.0010. 0.0020. 0.0040

State derivative measurement noise, a =0.0
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sample was used for all four curves on this figure with only a change in scale

factor to increase the effective noise level.

The error introduced by the state derivative noise source is much larger in the

upper mass parameters than in the lower mass. This should be expected since

intuitively, larger accelerations are produced from small state vector values on the

lower mass, thus overshadowing the noise on x,(ife).

State derivative measurement noise acts upon the identifier in the same

manner that road noise does. This being true then, as observation time increases

the estimates of the parameters will improve. However, unlike road noise

measurement noise does not excite the system, and within 5 seconds (or k= 100)

the state vector will reduce to 3 % of its original magnitude, eventually becoming

zero. Therefore, some form of continuous excitation must be present during the

identification process.

F. COMBINED NOISE

The combination of all the noise sources results in essentially the same

identification performance as would be expected from the worst individual noise

source applied. This should not be surprising since the three noise sources are

independent. Figure 3-7 illustrates this, for as each noise source becomes

dominant, its influence on the parameter estimates becomes more apparent. This

is particularly evident in the curve marked with "+" symbols, where the

increasing parameter error is due to state measurement noise a w . Because of the
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Figure 3-6 Parameter estimation error vs. number of iterations when four

different levels of state derivative measurement noise are applied.

Initial conditions, a = 0.1

Road noise, a = 0.0

State measurement noise, a = 0.0

State derivative measurement noise, a =0.020, 0.040, 0.080, 0.160
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Figure 3-7 Parameter estimation error vs. number of iterations when four

different noise sets are applied.

Initial conditions, a = 0.1

Road noise, a = 0.050, 0.010. 0.002. 0.0004

State measurement noise, a = 0.000125. 0.00025. 0.0005. 0.0010

State derivative measurement noise, a =0.040. 0.020. 0.010. 0.005
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large initial conditions, the estimations become nearly acceptable quite rapidly,

but the additive effect of state measurement noise quickly produces a bias in the

parameter estimates. In the curve marked by triangles, the estimates do become

acceptable, but the bias associated with even this small state measurement noise

is too much to allow the estimates to remain correct for long.

G. COMPUTATIONAL AND STORAGE REQUIREMENTS

The least squares algorithm has one rather obvious limiting feature. It is not

recursive and at each measurement interval, the state vector and the two

derivatives, z, and r
2

. must be stored. Therefore, it requires the storage of

(n+2)/^2*2rT floating point numbers, before the identification procedure begins.

The number of measurements. /, is quite large, and therefore the storage needed is

excessive. In the final computation, two matrices with (2n) elements will be used

for H H and its inverse.

From the above analysis, the total number of bytes of storage required for the

simple system discussed in this chapter is

/x[(4+2)x4] + 2x4x4
2
x4 = /x24 + 512 (3.19)

where each floating point number is assumed to be 4 bytes or 32 bits. Thus, if the

least squares algorithm program uses 1000 32 bit words of memory, then with 1

Megabyte of storage. / could be larger than 40.000 measurements.

Computationally, the requirements during the data collection process would

be minimal, but during the matrix manipulation operation the process is
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extremely intensive. The matrix multiplication of H H would result in 320.000

multiplies, 320.000 adds. 160.000 index register increments. 320.000 loads, and 64

stores. Assuming 6 ^sec/multiply, and 2 /*sec for all other operations, the

computation of the H H is completed in 3.52 seconds. Assuming the inversion

process, the iH Hj H computation, and the multiplication by the extended z

vector all take a similar amount of time, the total identification computation is

completed in 14 seconds.

Finally, if data measurements are taken every 0.05 seconds, the memory

would be filled in 33.3 minutes, and in 33.6 minutes the identification process

would be complete.

H. SUMMARY

The least squares identifier is elegantly simple mathematical! . but very

memory intensive. For the simple model employed in this chapter, its use is

almost feasible. However, as the state size increases, so does the memory

requirement. This limitation can easily be overcome with the recursive algorithm

that is presented in the next chapter. The recursive scheme used in Chapter IV

has all of the benefits of the least squares approach and eliminates the large

memory requirement.

The second drawback of the least squares identifier is the need for very low

noise state measurement equipment. In Section D it was seen that the standard

deviation of the state measurement noise could not exceed 0.5 % of the standard
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deviation of the initial conditions, and that the best parameter estimate was

achieved in 32 measurements. The system time constant is 1.4 second, which is

roughly equivalent to 32 measurements, meaning that the initial conditions have

diminished to 37 % of their original value. At this point in time, the measurement

signal to noise ratio is

S ° I 0.037— = — = = 7.3 (3.20)
A' o w 0.005

or 17.3 dB. This signal to noise ratio is easy to achieve for a sensor of this type. In

Chapter IV the signal to noise requirement will be examined in considerable detail

in order to determine the requirements on each sensor.

In this chapter very little was said about the sensors. The actual sensor

scheme was quite unrealistic, because it was assumed that i, and j, were each

measured twice: once for the state vector, and once for the state derivative vector.

In the following chapter these measurements will be taken once and used in both

vectors. A closer examination of this measurement discrepancy reveals that it has

no significant effect on the unknown parameter estimates and only effects the

identification of those parameters already assumed known.
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IV. KALMAN FILTER IDENTIFIER

A. INTRODUCTION

This chapter deals with the Kalman filter identifier developed in Chapter II.

Using a simulation study as in Chapter III, the limitations of the Kalman filter

approach will be explored. The recursive nature of the Kalman filter approach

makes it much better suited for on-line parameter identification. This will

alleviate the excessive storage needed for the least squares approach, but will

require considerable computation between system measurements during the

identification process.

Returning to the development in Chapter II. and using the more complete

noise sources of Chapter III. Equations 2.31 and 2.32 are transformed to

x(k) = H(k)6 (4.1)

z{k) = z(k) - v{k) - Bu(k) (4.2)

where u(k) and v(k) are random with covariance R
u
and R

t
. Rewriting the

Kalman filter equations to illuminate the changes incorporated above, gives

0{k\ k-l)=0{k-l\ Jfc-l) (4.3)

6[k\ k) = 0(k\ k-l) + G(k)\z{k) - H
r
[k)0{k\ Jfc-l)] (4.4)

G(k) = P(k\ k-l)H?(k)
i
H

r
{k)P(k\ k-l)Hj{k) - R

v
(k) - BR

u
B

T
j"

1

(4.5)

P[k\ Jfc-l) = P(k-lk-l) (4.6)
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P{k\k) = l-G(k)H
r
(k) P(k\k-1) (4.7)

where H
r
{k) is the matrix defined by Equation 2.19 .

It will be assumed that the measurements of both the state and its derivative

are available, but possibly corrupted by noise. Applying the three sources of noise

in the identification process: u(t) the road noise, w(t) the state measurement

noise, and v(t) the state derivative measurement noise, the effect of each source

will be analyzed. In this chapter, as in the last, the error measurement £ t
will be

used to determine how effectively the parameters are being estimated, with the

minimum acceptable estimates being within 10 percent of the actual values.

B. INITIALIZATION OF THE KALMAN FILTER

In Chapter II the specifics of initializing the Kalman filter were not addressed.

These initial values play an important role in the operation of the filter and

therefore should not be overlooked. The parameter estimation trajectory for the

recursive least squares identifier has been given for the single input single output

case as [Ref. 4:p.2l]

*
1

*
1

9{k) = iP
_1

(0) - £ —h{m)h T
(m\}

l
\P

l
(O)0{O) - £ —h{m)z(m)] (4.8)

R R V '

m = l m = \

This equation can be rewritten for the case of multiple outputs as

k k

9(k) = !P
_1

(0) - £ H 1

\m)R~
l

H(my~
l 'p- 1

(0)0(0) - V H T
(m)R~

X

z(m) (4.9)

m = l

Substituting Equation 4.2 for z(k) gives

47



www.manaraa.com

k

9{k) = \P '(0) - ^ tf (r,,)/? tf(m) (4.10)
m = l

[P
_I

(O)0(O) - V H T
[m)R'H{m)6 - V/J r

(
m )r' tl (m)j

m = l m = l

where t>()fc) denotes both disturbance noise and measurement noise without loss of

generality. If Equation 4.10 is rearranged, collecting like terms, then

6(k) = \I + P(0)P
_1

(it)r^(0) + \P(k)P~
l

(0) + I]~
l

- (4.11)

*

i P~
l

(0) + P'\k)Y
l

£ ^(mJjT^m)
m = l

where the equality

P[k) =
!
V H(m)R H(m)'\ (4-12)

m = l

has been used to simplify Equation 4.11 . The third term on the right side of

Equation 4.11 is related to the state measurement noise and will be discussed in

Section D of this chapter. The other two terms relate to initialization and

represent the identification trajectory without state measurement noise.

In order for <9(oo) to approach 0, the first term on the right side of Equation

4.11 must approach and the element multiplied with 6 in the second term must

become an identity matrix. The first requirement can be satisfied by setting £(0)

equal to zero. The second requirement, restated as

\im
k^JP(k)P (°) + 1\ e^ 6

(
4 - 13

)

is fulfilled if

lim^
ro
P(fc)-0 (4.14)

However, since the selection of P~'(0) very small would help reduce P(fc)P
_1

(0) more
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quickly, it is commonly suggested that [Ref. 6:p. 21]

P(O) = h (4.15)

where c is some large constant.

In the case of the identification process, since the values of the parameters are

unknown, the exact value of the P matrix cannot be known either. In fact the

best that can be done is to initialize the P matrix diagonally with values that are

approximately the square of the parameter values one anticipates. Thus if nothing

is known about the system except that the general range of the parameters is 10

to 1000, then a diagonal matrix with values of 10 may be a best first

approximation.

Figure 4-1 illustrates the effect of choosing the P matrix incorrectly. The first

two curves marked by squares and circles, show the effect of P(0|-l) initialized too

small. The identifier assumes it is closer to the actual value than it is and

therefore allows only small changes in the parameters This produces very slow

convergence to the correct values.

The curve marked with triangles is obtained when the diagonal of the P

matrix is initialized with 1000. This will be the initialization scheme used

throughout this chapter, since it appears to have both good initial response and

noise suppression in the later stage of the identification process.

The curve marked with "+" symbols shows that increasing the diagonal

elements of the P matrix to 10,000 produces still further improvement in the
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Figure 4-1 Parameter estimation vs. number of iterations for four different

initializations of the error covariance matrix.

Initial conditions, o =0.1

Road noise, a =0.1

State measurement noise, o =0.0

State derivative measurement noise, o =0.005.
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convergence rate of 0. However, other experiments showed a less significant effect,

and a value of 1000 was therefore used.

The R matrix in the gain matrix equation, Equation 4.5. is in this case the

sum of two matrices: the state derivative noise covariance matrix R
v

, and the road

noise covariance matrix BR
u
B . The R matrix controls the size of the gain matrix,

reflecting the confidence the identifier has in the measurements it is receiving. If

the confidence is high, the R matrix is small and the gain matrix is large, which in

turn decreases the error covariance matrix P more rapidly. Therefore, the

uncertainty due to the road noise only influences the parameters of the second

row in Equation 3.11 .

C. SYSTEM EXCITATION

It has been stated that the Kalman filter identifier described here is simply a

recursive weighted least-squares algorithm[Ref. 7:p. 252]. This being true, then the

use of this recursive approach will alleviate some of the computational difficulties

observed in Chapter III. Also, since the least squares identifier is able to correct

for noise introduced into the state derivative vector, given the proper number of

iterations, the error in the parameter estimates could be made arbitrarily small,

with an arbitrarily large noise source.

The recursive identification process will make it possible to find the

parameters with only road noise as system excitation. However, as can be seen

from Figure 4-2, the identification requires more than 40,000 iterations to obtain
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satisfactory values, for those parameters corrupted by the road noise: i.e.. the

lower mass parameter estimates. Figure 4-2 shows the identification error measure

£k as it increases. With no initial conditions the identification proceeds slowly but

does converge to the proper values as k becomes large. The upper mass

parameters, on the other hand, reach their final value within a much shorter time,

usually less than 1000 iterations, depending upon the value of a
x

. Notice the flat

section of the curve between 15.000 and 20,000 iterations. This plateau is 5000

iterations wide and could be mistaken for some form of parameter bias if only

20.000 iterations were done. There is an obvious difference between plateauing

and bias in that a bias will actually increase the parameter estimation error

consistently for many iterations, while the plateau will remain relatively fiat with

small variations up and down.

The slow convergence of parameter values observed with road noise as the

only excitation cannot be accelerated with the inclusion of initial conditions alone.

Along with initial conditions, the road noise must be small in order to increase the

filter's confidence in z
2 , the measured value for x

2
. and allow the identification

process to proceed more rapidly. Figure 4-3 demonstrates this quite clearly. The

curve marked with squares has initial conditions slightly larger than the standard

deviation of the road noise and consequently cannot converge to the proper

parameter estimates (for the second row parameters ) before the initial conditions

have diminished and the identifier has only road road noise for excitation while

identifying the second row parameters embedded in the road noise. The curve
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Figure 4-2 Parameter estimation vs. number of iterations with road noise as the

only system excitation.

Initial conditions, a =0.0

Road noise, a =0.1

State measurement noise, o =0.0

State derivative measurement noise, a =0.005.
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Figure 4-3 Parameter estimation vs. number of iterations with initial conditions

and various levels of road noise.

Initial conditions, a =0.3

Road noise, a =0.20. 0.10. 0.05. 0.025

State measurement noise, a =0.0

State derivative measurement noise, a =0.001.
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labeled with circles shows the same leveling off after about 32 iterations. This is

because the fourth row parameter estimates have converged to the correct values,

while the second row which is covered by noise could not converge as quickly. In

the bottom curve marked by "+" symbols both the second and the fourth row

parameters converge before the initial conditions diminish. The second row

estimates were able to converge in this case because the road noise was much

smaller than the excitation due to the initial conditions.

Since 40.000 iterations to reach an acceptable result is unappealing, the use of

an input pulse seems appropriate to decrease the required observation time.

Several important factors affect the Kalman filter's performance with an input

pulse as the source of excitation. The size and duration of the pulse are very

influential in determining the effect of the pulse on the identifier. The energy

absorbed by the system must be sufficiently large to overcome the corruption of

the state derivative vector by the road noise. More importantly, the width of the

pulse must be less than one measurement cycle in order to prevent correlation

between the input and the output and thus produce a biased estimate. Figure 4-4

shows the identification error when a pulse of various durations is applied to the

vehicle, and the other sources of noise are very small. When the pulse is present

for only one measurement of the system then the identifier produces acceptable

estimates within a few iterations. However, if the pulse is present during more

than one measurement cycle then it produces an estimate which will require

20.000 iterations to reach acceptable results. In the case of the pulse width of 3
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Figure 4-4 Parameter estimation error for various input pulse durations

shown in the legend.

Initial conditions, o =0.01

Road noise, a =0.001

State measurement noise, a =0.0

State derivative measurement noise, o =0.01.
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measurement cycles, another 30.000 iterations will be needed to find the correct

parameters. In the final curve, where the pulse was present during 4 measurement

cycles almost nothing is gained, and identification will take another 35.000

iterations.

D. STATE MEASUREMENT NOISE

The least squares identifier, and more specifically its recursive form, the

Kalman filter identifier, is derived with the assumption that the measurement of

the state is perfect. Therefore, the bias resulting from this noise source is

unavoidable. Returning to the parameter estimate trajectory in Equation 4.11,

the last term on the right side of the equation is the state measurement noise bias.

It was shown in Equations 2.19 and 2.20 that when the state measurements are

noisy, H
r
(k) and v(k) become correlated.

The third term of Equation 4.11 can be rewritten as

'

l l l

k

\P-
1

[Q)
+p-1

(k)}-
l
'£H;(m)R-

1

v(m) = |-P '(0) — P"'^)]"
1- £ H?(m)R-\(m)

(
4 . 16

)

k k k
V ;

where the left side is multiplied by — . Clearly, as k^oc then
k

Km^kPWElHjWlT 1

v{k)\»cE\H^{k)R~
l

v{k)\ (4.17)

where c is a constant, since P(k) is essentially a linearly decreasing function of k.

This has several implications. If significant state measurement noise is present,

then it is necessary to obtain the parameter estimates in as few iterations as

possible, because the correlation bias is a cumulative process. Rapid identification
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implies large initial excitation which would have the added quality of producing a

rapidly decreasing P(k) matrix causing c in Equation 4.17 to be small.

Figure 4-5 shows this cumulative bias quite clearly, for three different values

of measurement noise. Notice the two lower curves marked by triangles and "+"

symbols, which show the error measurement f4 for o w equal to 1 % of the standard

deviation of the road noise, and no state measurement noise, respectively. These

curves indicate that for small values of o v the identification process is only slightly

biased, but even for this small value of measurement noise there is a cumulative

bias. However, if o w is 2% of the standard deviation of the input road noise, the

identification is seriously impeded, as shown by the curve marked with circles.

The curve marked with squares is for a
u
equal to 4 % of o

u , and it is clear that in

10000 iterations no improvement has been made in the normalized estimation

error £k . In fact for values of o w larger than 2 % of o
u

, the parameter estimation is

divergent.

Figure 4-6 is an illustration of the bias accumulated over 40.000 iterations

when a a is 2 % of a
u

. Figure 4-6 should be compared with Figure 4-2. where after

40.000 iterations the difference between the two error measures £ k
is about 1.

Since the affect of a
w

is so profound on the estimation process, it seems

appropriate to obtain a signal to noise ratio for the state vector which will achieve

acceptable results. Recall that the standard deviation of the output of a linear

system is given by [Ref. 8:p. 184]
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Figure 4-5 Parameter estimation vs. number of iterations with road noise as

excitation and various level of state measurement noise.

Initial conditions, a =0.05

Road noise, a =0.1

State measurement noise, c =0.004. 0.002. 0.001. 0.0005

State derivative measurement noise, a =0.1.
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Figure 4-6 Parameter estimation vs. number of iterations with road

noise as the only system excitation.

Initial conditions, a =0.0

Road noise, a =0.1

State measurement noise, a =0.002

State derivative measurement noise, a =0.005.
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1 *

*L = _ f I^MlXH^' (4.18)
~r ^
7T

where ; i/(w)j is the magnitude of the transfer function and SJu>) is the power

spectral density of the input signal.

The transfer function H(s) can be obtained from

X(s) = (sI-A) z(0) + (sI-Af
1

BU(s)

or if x(0) is zero, then

(4.19)

*{») -i
H(») = = [sI-A) B

U(s)

The magnitude squared of H(s) is derived from

(4.20)

\H{s)\= H(s)H(-s)

and replacing s by jw produces i H[w)\

(4.21)

The system is excited by a discrete noise source whose autocorrelation

function can easily be derived. Since

Ru (t) = E\u(t)u(t-r)

then

RJO) = E\u
\

= <x
u

(4.22)

(4.23)

and

RJt) = for \i\ > T

so that

(4.24)

R..

1-
,M<r

t\>T

(4.25)

where T is the pulse width of the discrete noise source [Ref. 8:p. 121]. Figure 4-7
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depicts the autocorrelation function of the discrete road noise. The power spectral

density of this process is. [Ref. 8:App. E]

S„M = °
u

sin (wT/2)

("772)

Therefore, the standard deviation of the output is

(4.26)

7V
-f l#,-MI

•J n

sin(wr/2)

(«r/2) j

where i denotes the associated state variable i = 1,2,3,4.

(4.27)

Using numerical

integration, the output standard deviations a
z
of the state vector are

r .386,

1.84

.402

1.0

(4.28)

The observed standard deviations of the state vector during simulation of the

simplified model for four different ensembles of road noise and average over 10000

measurements are as follows:

(4.29)

These results are in excellent agreement with the analytic results of Equation

4.28 . Some interesting observations can be made from these results. Note that for

a given level of road noise a
u

. the wheel velocities a
x

are almost twice as large as
2

the input noise values. Written in equation form this becomes

r .366-, .390n r .352
1 r

372
i

1.78 1.83 1.76 1.80

.368
'

.403
1

.372
'

.388

.941
1

1.05 .922 1.03

o
r

= 1.84a,
Z
2

(4.30)

The vehicle body velocities reflect the input noise almost exactly. Also, the
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Figure 4-7 Autocorrelation function for discrete road noise with T =0.05
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position change of the wheels and the body attenuates the input road noise

significantly.

The results in Equation 4.28, give the standard deviation of the state vector

with only road noise as input to the simplified vehicle. Evidently, if measurement

noise is applied uniformly to the component measurements of the state, some of

them will suffer more corruption than others. In order to dissect the identification

error caused by the noise added to each element of the state vector when a w is

uniformly applied to each element, the noise was added to only one element of the

state vector at a time during simulation. The signal to noise ratio at each sensor is

given by

— = v, = —
N a.

(4.31)

where the i denotes the element of the state vector and — is given in Equation

4.28 . Therefore, if the road noise standard deviation <t is 25 times greater than

the state measurement noise standard deviation a w , then the signal to noise ratio

at each sensor is

r .38& r 9.65, r 19.7,

St

N

1.84

.402
25 =

46.0

10.0
=

20.0

1.03 25.8^ 28.T

Define e,( k) as

dB. (4.32)

«.(*) = U*)-sc„(*) (4.33)

where £w (k) is the error measure with state measurement noise added to only the
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z'th element of the state vector and £ (k) is the error measure after k iterations

without any state measurement noise applied.

By adding state measurement noise to only one element of the state vector at

a time, the effect of the added noise on each element can be seen. Three

simulations were run, each with a different ensemble of noise and the average

error caused by adding measurement noise to each element of the state vector was

e,(8000) (4.34)

.605,

.001

.705

.03?

Notice here that the sensor with a 33.3 dB signal to noise ratio produces only a

very small bias error at 8000 iterations, while the sensor with a sensitivity of 28.2

dB. produces a bias 30 times as large.

More analysis could be done on this topic, but it is sufficient to conclude that

the necessary signal to noise ratio for each sensor is about 33 dB.

E. STATE DERIVATIVE MEASUREMENT NOISE

The Kalman filter identifier can identify the parameters of the simplified

vehicle through the state derivative noise introduced by the random vector v(k).

Since this algorithm is a weighted least squares method, and is recursive, the size

of a
c
determines only the length of time required to identify the parameters. The

accuracy of the estimates can be arbitrarily close to the actual values given the

appropriate number of iterations.
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However, should the standard deviation of the vector v(t) be underestimated

the result will be a biased estimate of the parameters. Because the P(k) matrix

diminishes too rapidly, the parameters cannot be estimated before the gain matrix

becomes very small and no significant change in the parameter estimates can be

expected. This bias leads to a very serious limitation of the Kalman filter

identifier, which requires either extended observation time or acceptance of a bias

produced by the excess road noise. The long observation time is required since

the standard deviation of the road noise must be estimated large to allow for large

road noise inputs, which in turn will cause very slow convergence.

The need to eliminate this excess excitation bias points to a reinitialization

scheme, which will restart the gain matrix and allow identification to continue.

This scheme is used whenever the filters perceived error in the error covariance

matrix becomes exceedingly small, while the actual measured error given by

e(ifc) = z-.H6=
\
e,. . . . , ejk)

T
(4.35)

remains relatively large. The reinitialization of the identifier will eliminate this

form of bias, but will not improve the required estimation time directly. The

advantage of choosing the R matrix smaller than the actual value of the noise

covariance is obvious from Figure 4-8. What is less obvious is exactly how to

determine when to reinitialize and how much to increase the diagonal of the P

matrix. Figure 4-8 demonstrates the effectiveness of a reinitialization procedure

that multiplies the diagonal elements of the P matrix by ten and doubles the

elements of the R matrix when the sum of the diagonal elements of the P matrix
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become smaller than ten times the sum of the error vector in Equation 4.35 .

This scheme is given in equation form as

2
n n

10EI«,(*)I > EW (4-36)

i=i >=i

Figure 4-8 illustrates the advantage of a reinitialization procedure. The curve

marked with squares was produced using an identifier with the correct values in

the noise covariance matrix R. The other three curves denote identifiers which

initially had smaller values in the R matrix, as shown in the legend. The

reinitialization scheme is visible at several point along the curve marked by " + "

symbols. The most obvious reinitialization happens at about 5000 iterations, when

both the curve marked by triangles and the one marked with " + " symbols are

reinitialized. It seems evident that reinitialization can be applied whenever the

state derivative noise is larger than anticipated, or very little is known about the

noise source, as in the case of road noise.

F. COMBINED NOISE

The combination of all the noise sources results in essentially the same

identification performance as would be expected from the worst individual source.

just as it did for the least squares approach of Chapter III. Figure 4-9 shows that

the effect of state derivative measurement noise is insignificant when compared

with the effect of even very small values of state measurement noise. The

correlation of the H(k) matrix and the input noise v(k) as described in Equation

2.20 is the cause of the bias due to state measurement noise. In the case where
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Figure 4-8 Parameter estimation vs. number of iterations with incorrect

selections of the road noise covariance matrix using reinitialization

to continue the identification process.

Initial conditions, a =0.05

Road noise, c =0.1

State measurement noise, c =0.001

State derivative measurement noise, a =0.8.
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Figure 4-9 Parameter estimation vs. number of iterations for various levels

of statemeasurement noise and state derivative measurement noise.

Initial conditions, a =0.1

Road noise, a =0.1

State measurement noise, a =0.000. 0.002. 0.000. 0.002

State derivative measurement noise, a =0.001. 0.001, 0.900, 0.900.
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only a, was applied, as in the curve marked by triangles, it has very little effect on

the identifier. When state measurement noise is present however, the error

introduced is quite significant. When both noise sources are applied the outcome

is equivalent to only state measurement noise.

G. INSTRUMENTATION

In Chapter III it was assumed that the state vector measurement and the

state derivative vector measurement were obtained from separate instruments. In

this chapter, a more realistic instrumentation philosophy was employed. Since

/ • \

z
I

z<\

(4.37)

then the noisy measurements are given by

1 'y

/ • \

x,-r

/ x~+ w~

U.tID

/ r„

4 ""4

(4.38)

Thus, when only one measurement is taken of each physically distinct component

of the state vector, it follows that

/ v.

\ v,

»2

\
«'

[4.39]

This does not significantly affect the results of Chapter III, for the reasons given

in the summary of that chapter, but it does reduce the number of measurements

of the system from 8 to 6.
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The measurements Taken on each mass are the acceleration x. the velocity x.

and the position x. While the acceleration measure can be allowed to be noisy, the

velocity and the position must have a signal to noise ratio of 33 dB. The

acceleration will no doubt be obtained from an accelerometer, but the velocity

and position measurements could be obtained in a variety of ways. Since

integration is inherently a noise reducing process, it should be possible to

integrate the acceleration to obtain the velocity and integrate the velocity to

obtain the position. This could be done with analog or digital techniques and the

choice might very well depend on the computational load on the microprocessor

used in the identifier. Some drift correction would of course be required over long

measurement times.

H. COMPUTATIONAL AND STORAGE REQUIREMENTS

The Kalman filter identifier places a large burden on the microcomputer

during its operation. Table I presents a rough calculation of the typical cycle time

for the 4 state, 6 measurement Kalman filter examined in this chapter. Adding up

the times in the bottom row of this table gives a total cycle time of 3622 n

seconds. While the numbers used for the time required for each operation are

somewhat arbitrary, they are typical, and thus it seems quite possible to process a

measurement every 0.05 seconds, as was done in the simulations of this chapter.

The storage requirement for this algorithm was 352 bytes of memory. This is a
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Table I. Cycle time for the Kalman filter identifier

to compute operation

mult divid add inc/load store

G=PH[HPH+R] 80 2 5C 158/104 30

P= [I-GH]P 160 104 160/152 104

x=x+Ge 16 18 35/ 46 18

total ops 256 2 178 353/302 152

time/op (/xsec) 6 8 2 2 2

total time 1536 16 356 1310 304

considerable improvement over the least squares identifier requirement of 1

Megabyte.

It is quite possible that this identifier could be implemented on a very small

circuit board with only the microprocessor, a 1 kilobyte ROM chip. 512 bytes of

static ram and 6 buffer chips to receive the discrete state and state derivative

measurements.
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I. SUMMARY

The Kalman filter identifier has several advantages over the least squares

approach, with very few disadvantages. Because the Kalman filter is a recursive

weighted least squares algorithm, it requires less memory. More importantly, since

this approach is a Kalman filter, it provides an organized and meaningful way of

choosing the weightings and the initial conditions. The identifier is capable of

finding the parameters even when considerable road noise and state derivative

measurement noise are present. This approach is not capable of producing an

unbiased estimate of the parameters in the presents of state measurement noise.

The signal to noise ratio of the sensors must be better than 33 dB in order to

produce an unbiased estimate of the parameters. This signal to noise ratio is fairly

close to the one found in Chapter III. using a very simple approach. The

requirement for near perfect state measurement is a limitation of both the least

squares and Kalman filter approachs. This limitation, though constraining, is not

unacceptable, due to the recent advances in accelerometers and ring laser gyros. It

will make the use of expensive hardware a necessity, however. In the next

chapter, the stochastic gradient approach is evaluated. The stochastic gradient

approach promises to remove the need for perfect state measurement and still

produce an unbiased estimate.
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V. STOCHASTIC GRADIENT IDENTIFIER

A. INTRODUCTION

The stochastic gradient identifier is perhaps the simplest algorithm that can

be applied for parameter identification. This simplicity has the price of slower

convergence. In this chapter the stochastic gradient approach will be analyzed

using a simulation study and the same simple vehicle model as in the last two

chapters. This algorithm promises to eliminate the need for perfect state

measurements which is a very desirable feature.

Recall from Chapter II, that for the system defined by

z(k) = H
T
{k)6 + v(k) (5.1)

where v(k) represents both disturbance and measurement noise, and H
r
(k) is

defined in Equation 2.19. that the stochastic gradient algorithm is

0[k + l) = \I + R{k)Z N }6{k) + R(k)H?(k)z(k) - R(k)E\H
T
(k)v{k) (5.2)

This equation was derived under the assumption that all three noise sources used

in Chapters II and III would be present, and therefore the algorithm will produce

an unbiased estimate of the parameters of the vehicle in the presence of: u(t) the

road noise, w(t) the state measurement noise, and v(t) the state derivative

measurement noise.
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B. BIAS ELIMINATION

If Equation 5.2 is broken up into components associated with either

parameter identification or bias elimination the result is

6(k + l) = 0(k) + R(k)H*(k)z{k) (5.3)

+ R{k)VN0(k)- R{k)E\H
T
(k)v(k)}

The two elements on the second line of Equation 5.3 are used to reduce the bias:

the first uses EN , the covariance matrix of the state measurement noise N(k), and

the second uses the input-output cross correlation E\H (k)v(k)}.

The value of the state measurement noise covariance matrix, LN is easily

obtained from

£„ = E\N
T
(k)N(k)} (5.4)

which is a block diagonal matrix, with n blocks of n * n elements equal to o w .

The value of the input-output crosscorrelation matrix is somewhat more

difficult to obtain, but in this simplified model with a single input which is white

noise the crosscorrelation is

E\H
T
{k)v[k)\ = E\H

T
{k)\ E\v(k) = (5.5)

because v(k) is assumed to be zero mean. This simplification leads to the

algorithm

6{k+l) = [I + R(k)ZN ]6(k) + R(k)Hj(k)z{k) (5.6)

where the determination of R{k) is the subject of the next section.
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C. CHOICE OF THE GAIN MATRIX R(k|

There are many possible choices for the gain matrix R(k). only two of which

were introduced in Chapter II. The R(k) matrices discussed in Chapter II were

chosen because of their computational simplicity. However, another requirement is

that R(k) must be independent of H(k) and 6(k). which was a requirement for the

derivation of Equation 5.2 . Two rather substantial problems become apparent

immediately: first the need to make H(k+l) and H(k) statistically independent,

and second the slow convergence of the algorithm due to the simple steepest

descent gain matrix chosen as R(k). In order to make H(k+l) and H{k)

independent in this simplified vehicle they must be separated in time by four time

constants of the system or 5.6 seconds. This separation means that very extended

observation times will be needed to reach an acceptable parameter approximation.

The simple selection of the gain matrix R(k). which at first glance may seem to be

a computational advantage, will require more iterations to obtain acceptable

results than many of its more sophisticated counterparts.

One final observation can be made concerning the stability of Equations 5.2

and 5.6 . before proceeding into the simulation study. Consider again Equation

5.6 in the dynamic systems sense and notice the time varying state transition

matrix given as

*(*) = [/ + R[k)X N (5.7)

For this discrete time system, the characteristic equation will certainly have poles

on the unit circle, and if state measurement noise is present then the roots will all

76



www.manaraa.com

be outside the unit circle, since both R(k). the gain matrix and EN . the state

measurement noise covariance matrix are positive definite. It seem reasonable that

the magnitude of R(k) and its rate of decay will play a very important role in

determining whether successful identification is made. However, there is very little

information available concerning how to select an optimal R(k) matrix. Thus the

first part of the simulation study is devoted to the proper selection of R(k).

D. INITIALIZATION OF R(k)

In Chapter II, two choices for the gain matrix R(k) were presented. The first

based on Venter's theorem was

1 1

R(k) = — diag[hJk), hJk) h
2 \

for — <p^l (5 8)
k
p "

2

and the second based on Lyapunov's Main Stability theorem was

diag\h
x
(k), h

2
(k)

y
. . .. h

2 ]

R(k) = ;
—

(5.9)

Zh,(k) r;(k)

1=1

where h
t

(k) can vary for different anticipated values of 0. The second gain matrix.

in Equation 5.9 is not independent of H(k) and although Mendel [Ref. 4:p. 268]

suggests its use, it will probably result in a biased estimate.

Figure 5-1 shows the difference in convergence, when the two different choices

of R(k) are used in the absence of measurement noise while the system is excited

by road noise. Again, the error measure fA is used to determine how close the

parameters estimates are to the actual parameters. The curve marked with
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squares is the error measure £ k
when R{k) is chosen as in Equation 5.9. while the

other three curves are for various values of h
t

(k) using Equation 5.8 to determine

R(k). while holding p constant at 0.51. The curve derived from the use of

Equation 5.9 initially reaches the smallest value and then stablizes as do the

other three curves. This is due to the more responsive nature of Equation 5.9

and the larger variations in the bottom curve when compared with the upper

three curves also demonstrates this. The error measure marked by circles has the

smallest elements in the R(k) matrix and is therefore the least responsive as can

be seen in the figure. The curve marked with " + " symbols has larger elements in

the R(k) matrix and represents the largest elements that can be expected to

produce acceptable convergence. The curve marked with triangles performs the

best with smaller elements of R(k). and will produce more consistent results,

particularly in the presents of noise. For this simulation, the separation time

between measurements was 0.05 seconds, thus for the 1000 iterations represented

here the total observation time is about 50 seconds. This time period has

produced results which are worse than the Kalman filter approach normally

produces in the first 5.0 seconds of it's operation, when starting with the same

initial conditions.

This slow convergence in the absence of noise is quite troublesome. In fact if

the identifiers convergence rate remained constant, which it certainly will not

since convergence is asymptotic, it would still require approximately 18 hours to

reach an acceptable approximation in the presence of measurement noise. There
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are few identification scenarios in which 18 hours is considered appropriate for

system identification. If the system is initially known and one was attempting to

follow time varying parameters this approach might be more appealing.

The road noise in the vehicle model produced very large deviations from the

actual second row parameters if the h
t
(k) values for that row became too large.

The identifier produced the best results when

10hf{k) = hi+i{k) for 1 = 1,2,3.4 (5.10)

Figure 5-2 shows the error measurement curve for the same noise ensemble as

used in Figure 5-1 but with state measurement noise added. Comparing the effect

of the added noise on the Venter gain matrix R
v
(k) and the Lyapunov gain matrix

R,(k). it can easily be seen that R,(k) is profoundly effected while the curve

resulting from the use of R
v
(k) is nearly unchanged. This change in the error

measurement curve due to the use of R
t
(k) is the result of the correlation of R,(k)

and H(k) which were assumed uncorrelated in Equation 2.57 . Therefore, the use

of R
t
(k) will produce a bias and the use of R

v
(k) produces extended observation

time. Since the stochastic gradient approach was chosen because it promised to

produce an unbiased approximation of the parameters, the gain matrix R,(k) will

not be explored further.

The slow convergence rate of the steepest descent stochastic gradient

identifier must be improved in order to make the identification scheme acceptable.

There are several factors which affect the convergence rate which can be explored

in an attempt to improve the convergence. In Figures 5-1 and 5-2, the value of p
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the power to which k is raised in Equation 5.8. was 0.51. Figure 5-3 demonstrates

the effect changing p to 0.95 has on the error measurement in the presence of

measurement noise. Since p is now larger, which will force R[k) to diminish more

rapidly, one might have expected that the use of larger values of h^k) would

produce better results. This was not the case, and

h;{k)=4 (5.11)

was the largest value that converged in the presence of noise. Without

measurement noise much larger values of h
t

(k) are possible, but the convergence

rate is only slightly improved.

It is possible that the optimum value for p is between 0.51 and 0.95. However,

Ljung [Ref. 6:p. 279] suggests that it is desirable to let

where i(t) is defined in this thesis as

7(*) = — (5.13)
k
p

This implies that

7(*) = - (5.14)

It is also suggested that for small and intermediate values of k, i(k) should be

chosen different lv. Thus define

l(k) -

\[k) (5.15)

7(*"1)

and
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A(*) A A(ifc-l)T (1-A
) (5.16)

Here A(ifc) is considered to be a forgetting factor, reducing the identifiers

responsiveness to early values of the error vector z{k)-z{k). Figure 5-4 shows the

improved convergence obtained with

A =0.99 (5-1")

and

A(0) = 0.95 (5.18)

l

when using -)(k) as defined in Equation 5.15 to replace — in Equation 5.8 .

k
p

The smallest value of fA
has decreased below 5. but the improvement is not

enough to produce an acceptable results in an acceptable observation time.

This slow convergence is predictable according to Ljung [Ref. 6:pp. 290-299].

It is suggested that the convergence rate can be improved with the Gauss-Newton

algorithm. However, the Gauss-Newton algorithm has no advantage over the

Kalman filter approach for the system being considered here.

E. SUMMARY

The stochastic gradient approach was chosen because it theoretically produces

an unbiased estimate even in the presence of measurement noise. The simplicity of

computation is a desirable feature. However, the computational simplicity of the

steepest descent algorithm also means very slow convergence. The slow

convergence of the algorithm could be improved with a more sophisticated choice

of search direction. The improvement achieved by using an algorithm which is
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correlated with H[k) would be offset by the bias produced from this correlation.

The use of the forgetting factor \{k) does improve the convergence, but this

improvement is not significant enough to allow identification in an acceptable

observation time.

Because of the slow convergence of the stochastic gradient approach, for the

remainder of this thesis, it is abandoned in favor of the Kalman filter identifier. In

the next chapter an improved model is introduced, which will introduce another

facet of the land vehicle identification problem.
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VI. IMPROVED MODEL IDENTIFICATION

A. INTRODUCTION

In the last three chapters a very simple vehicle model was used to test various

identification algorithms. In this chapter a more realistic model is presented. The

improved model is compared with the model developed in Chapter III, to

determine how increased model size effects the identification process. Finally, the

problem of two road noise inputs is discussed and the resulting identifier is

analyzed.

B. AN IMPROVED MODEL

In Chapter III the simplified vehicle used for the simulation study of various

identification schemes was developed. This simplified model has one very serious

limitation that must be taken into account for an actual vehicle. The limitation is

associated with the fact that it is a single input system, whereas an actual vehicle

would have several inputs. Specifically, the inputs to the front and rear wheels

will be correlated, and even if the white road noise approximation is considered

valid, this correlation will produce a bias in an actual vehicle parameter

identification. In order to analyze possible bias elimination schemes or in fact to

determine if any approach is valid when there is correlation between the inputs, a
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more realistic model is needed. In this section a eighth order, four-degree-of-

freedom model is presented.

Consider the vehicle depicted in Figure 6-1. In this model the separation of

the suspension into front and rear units, necessitates the introduction of rotational

freedom about the lateral axis. This allows both rotational and vertical motion of

the upper mass, the vehicle body.

The equations of motion for the improved vehicle are

E f = -m
1
'x
1
-[x

l
-(x

i
+</>l

1
)]k

l2
- \x

l
-{z

s
+ <j>l

l
)\b

l
+ {u

1
{t)-x

1
)kn

2
1

Yj F
= — m

2
z
2
-[z

2
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)\k
2i
— [z

2
-(r

s
— </>/

2 )]6 2
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(6.1)

(6.2)

E, = -Mz
3 + jz

I
-(z

3
+ ^/

1
)]fc

12 + (z
2
-(z,-<2i/

2 )]/: 22 + [z
1
-z

3 +<^/ 1 )]6 1
+ [z

2
-(z

s -0/,)]6 2 (6>3
)

SM = -J*> + {[i,-(x
s+^/1 )]*12 + izj-lzj-^/Jlfcj}/, - {[z

2
-(z

3
-«i/

2
))A:

22 + (6.4)

where the equations have been linearized for small values of <z>. The resulting

state equations produce Equation 6.6. where the state vector is

(6.5)

The upper mass M, is now supported by two wheels m, and m
2

. The wheels
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Figure 6-1 Improved Vehicle Model
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are free to move vertically, while the body M, is free to move both vertically and

to rotate about its center of mass, which need not be equidistant from the wheels.

The angle of rotation <t>, and the displacement z
i
describe the vehicle body, while

x, pertains to the front wheel displacement and z
2

is the rear wheel displacement.
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For the simulation study of this chapter the values selected for the dynamic

components were

r *• k l
11' 21 r 100|

Ic Ic 40

bv 6, 60

mv m
2 1

M 20

J 60

'i
2

- '.

L

1
J

(6.7;

These values for the dynamic components of the system produce a vehicle model

with roots of the characteristic equation located at

.656±y 3.11

.691±j' 2.08

.738

.837

61.5

65.3

(6.8]

As in the model developed in Chapter III. the input distribution matrix must be

known, since the input vector is unknown, and the state vector x(k) and its

derivative \(k) are measurable, but corrupted by noise.
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In the improved model there are now two road noise inputs, which are

correlated and shall be written as u(k) and u(k—r), where r is the time delay

between a road input to the front wheel and the same road input to the rear

wheel. The value of r is given in terms of the vehicle's velocity v, as

/

r=- (6.9)
v

where / is the distance between the front and rear wheels. The correlation

between u(k) and u(k-r) will be considered in detail in Section D. The other two

noise sources remain the same, where w(t) is the state measurement noise and v(t)

is the state derivative measurement noise.

In this chapter the parameter error measure fA
will be used again, with one

minor change. The improved model parameters of Equation 6.5 have two zero

values in each of the second and fourth rows. These zero values shall not be

considered in the error measure £k even though they appear in rows with unknown

parameters. This assumption is a requirement of the definition of £k
given in

Equation 3.17. This allows the use of the same error measure given by

28
*,-*,(*)

r

> i

(6.10)

The summation goes to 28 because the four zero values of rows 2 and 4 are not

considered, and 32 of the 64 parameters are assumed known.

In the next section, the new model will be compared with the vehicle of

Chapter IV to determine the effect increasing the state size has on system

identification.
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C. IMPROVED VEHICLE PARAMETER IDENTIFICATION

The opportunity to analyze the effect of changing state size on parameter

identification should not be neglected, since only the sparsest reference is made to

it in the literature. The change from a fourth order model to an eighth order

model correspondingly changes the number of parameters from 16 to 64. As in the

case of the fourth order system, half of the 64 parameter values are assumed

known from the structure of the plant, and four more will not be considered in

the parameter error measure ft
for the reasons discussed in the last section,

leaving 28 parameters to be estimated. This rather substantial increase in

parameters to be identified has a significant influence on the identification process.

Making use of the results of Chapter IV. a comparison shall be made with the

improved model under similar noise conditions. In this section the model will be

excited using noise into the front suspension unit only. In the following section

the improved model will be excited with road noise entering both suspension units

and comparisons will be made.

1. P(0) Initialization

The initial value of the diagonal of P plays an important role in the

convergence rate of the Kalman filter identifier. Figure 6-2 shows how various

values of the diagonal of P , the error covariance matrix, effect "he identification

process. Several observations can be made concerning the convergence rates as

depicted by the parameter error measure £k , especially when compared with the

curves in Figure 4-1. The curve marked with "+" symbols produces the fastest
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initial convergence although the curve marked by triangles is approaching it and

the triangled curve shows much better consistency during the early part of the

identification. These remarks are true for both Figure 6-2 and 4-1. The higher

order model must be broken into two diagonal blocks, because the size of the

parameters in the sixth and eighth rows are so much smaller than the parameters

of the second and fourth rows. Thus the second number in the legend is the value

of the lower half diagonal of P(0). Because of its more consistent response, the

value for the upper half diagonal of P was chosen at 1000 and the lower half

diagonal was selected at 8. The smaller value for the lower half diagonal of the P

matrix is due to the much smaller values of the elements of the sixth and eighth

row parameters.

2. Convergence Rate of the Improved Model

The higher order of the improved model would lead to the assumption

that convergence to acceptable parameter estimates will take longer than for the

fourth order model. Figure 6-3 demonstrates the convergence rate for the eighth

order model with only road noise excitation. Figure 4-2 shows the convergence

rate for the fourth order model under the same noise conditions. It is difficult is

compare convergence rates of systems of different order, but several observation

can be made. In Figure 4-2, the plateauing effect is visible between 15,000 and

20.000 iteration. In higher order models the tendency for the parameter estimates

to plateau is much greater and may require more iterations before improvement

begins again. The plateauing effect in higher order models can be confused with a
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bias if one does not look carefully. The difference is that in the case of a bias the

estimations will tend to become worse and there will be an increase in the

estimation error measure £t , while plateauing will result in essentially a fiat error

measure. In fact, during the simulation study of this eighth order model a

plateau of 20.000 iterations was encountered. How to detect these long intervals

with very little improvement in parameter estimation and what to do when a

plateau is encountered is not addressed here. The fourth order model in Chapter

IV required 40.000 iterations to identify the system parameters, while the eighth

order model shows no improvement after 20,000 iterations for the same noise

scenario. The parameter error measurement spike that occurs at approximately

13.000 iterations is somewhat mysterious. It seems likely, however, that it is

caused by some form of system reflection where the input is reflected back from

the rear wheel, appearing as a second input to which the identifier respond

incorrectly.

3. Initial Conditions and Road Noise

Figure 6-4 illustrates the effect that large initial conditions and various

amounts of road noise have on the Kalman filter identifier. Since only 6 of the 8

parameters in the second row are considered in the parameter error measure £K ,

and there is road noise on only the second row estimates, the identifier is able to

extract all of the other parameters except the second row. As the second row

parameters are covered with road noise, little progress is made toward their

97



www.manaraa.com

r- -

O
OS

W °

o

O
O

= 0.30 0.200 0.00 0.001
= 0.30 0.100 0.00 0.001

A = 0.30 0.050 0.00 0.001
+ = 0.30 0.025 0.00 0.001

o.o 25.0 50.0 100.0
—

i

125.0 150.0 175.0 200.0

Figure 6-4 Parameter estimation error with various levels of road noise

and constant initial conditions.

Initial conditions, a =0.3

Road noise, a =0.2. 0.1. 0.05. 0.025

State measurement noise, a =0.0

State derivative measurement noise, a =0.001

98



www.manaraa.com

identification before the initial conditions diminish and the system's only

excitation is from the road.

Comparing Figure 6-4 with Figure 4-3, some other observations can be

made. Because of the larger search space of the eighth order system, it will

usually require more iterations to reach acceptable identification. This can be seen

in the slower convergence of Figure 6-4.

4. System Identification with Pulse Inputs

Figure 6-5 was produced using a P matrix diagonally initialized with

1000. The increase in the estimators responsiveness is quite apparent. The curves

in Figure 6-5 show the identification process when pulses of various widths are

used. The curve marked by squares is the estimation error when the system is

excited with an impulse, during the ninth measurement cycle. In the case of the

fourth order system the energy absorbed by the system was enough to allow the

identifier to estimate the parameters. In the eighth order model, because of the

larger parameter inertia, the identifier is unable to reach acceptable identification

before the impulse energy has dissipated.

5. Identification with State Measurement Noise
r

Figure 6-6 illustrates the tremendous effect state measurement noise has

on the Kalman filter identifier when used in an eighth order system. The curve

marked with "+" symbols has no state measurement noise, and the other three

curves have varying levels of measurement noise. The system is excited by road

noise. The curve marked with circles has measurement noise of only 1 % of the
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Figure 6-6 Parameter estimation error when various levels of measurement

noise are added to the state vector.

Initial conditions, a =0.05

Road noise, a =0.1

State measurement noise, a =0.002. 0.001. 0.0005. 0.0000

State derivative measurement noise, a =0.1
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road noise input to the system, and yet at 5000 iteration the parameter estimates

are diverging. Figure 4-5 shows the identifiers estimation error for some of the

same values of state measurement noise. In the simplified model, it can be seen

that at 5000 iteration when measurement noise was 4 %, the identifier produced

similar results. From this observation it is reasonable to assume that that eighth

order model is 4 times as sensitive to state measurement noise and would

therefore require sensors with a signal to noise ratio at least 6 dB greater than the

fourth order model required.

D. TWO INPUTS TO THE IMPROVED MODEL

The use of a single road noise input into the improved vehicle model is

somewhat artificial but does provide some insight into the effect of increased

model size on the parameter identification process. The single input analysis of

the last section also provides insight into results to be expected when two road

noise inputs are applied to the model.

In this section the model will be excited with road noise through both wheels.

The road noise into the front and rear suspension system of the vehicle will be

correlated in time, since the front wheel will encounter an obstacle r seconds

before the rear wheel. Recall from Chapter IV Equation 4.11 that the bias on ~9{k)

is the result of the input-output crosscorrelation as described in Equation 4.16. If

the improved model is excited through the front wheel with an obstacle in the

road, then the output, the state of the system will be correlated with the input to
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the rear suspension when it encounters that same obstacle r seconds later. Then

from Equation 4.11, the bias produced by this correlation will be

\p-\0) + p-'Wr' S H T
(m)R-

l

v(m) .

(
6 .U

)

m = l

where v(m) is the total noise vector including u(k-r), which is correlated with

H T
(m).

A possible solution to the input-output crosscorrelation bias that will

undoubtedly result in slower convergence is as follows. Assume for a moment

that the parameters of the second row of Equation 6.5 are known exactly. This

being true, then the first element of the error vector is defined by

e,(Jfc) = z
2
- x0,_

8
= v

2
(k) - 6

21
u{Jb) (6.12)

where 0,_ g
represents the first 8 elements of the 6 vector, which are known exactly.

The discrepancy in the subscripts resides in the fact the the first and third rows of

the A matrix are assumed known and therefore are not part of the identification

process. If it is further assumed that the measurement noise is negligible

compared to the road noise, then

6
2I

u(Jt) « cj(jfc) (6.13)

In order to eliminate the effect of the road noise from the identifier, the

measurement samples must be taken when the rear wheel is exactly over the same

position on the road that was samples r iterations before when the front wheel was

over that point. This can be accomplished because of the asynchronous nature of

the identification scheme presented here. If this element of the error vector is
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then subtracted from the second element of the error vector r seconds later, this

will eliminate the road noise from the error vector and the identifier will produce

an unbiased estimate. This can be expressed mathematically as

«
2 (*)

= za~ xVi6_e i(* -r )

= v
i[
k

) + 9{Ak)Js- Xt -h-i<,) + b
ii
u

{
k

)
-bn u(k-T)-v

2(k-r) (
6 - 14

)

where the two input term on the right side of the equation cancel. The

assumptions used earlier may now be lifted since e,(£-r) is white noise. This can

be seen if Equation 6.12 is considered as a whitening filter. Then e,(/r-r) is an

innovation sequence and it can be shown that [Ref. 7:p. 250]

E\e
x
[k-T) i z2(k-r-l), . . .,z2

{k )}
= (6.15)

The convergence rate of this approach will certainly be affected, since the

variance of the noise on the fourth row parameters is very large until the

parameter estimates of the second row of Equation 6.5 become more accurate.

Before analyzing the bias elimination scheme proposed above, a look will be

taken at how the identifier responds to two independent road noise inputs and

then the bias itself will be shown. Figure 6-7 illustrates the parameter error when

two different road noise ensembles are input to the front and rear suspension units

of the improved model. As one might have anticipated, the added noise source

results in less effective identification of the fourth row parameters which translates

into higher values of the parameter error measure. However, the identification is

somewhat better than one might expect. When two different road noise inputs are

applied to the vehicle the resulting parameter error is not twice as bad as when a

single input is applied. The plateau is again present for the last 4000 iterations.
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Figure 6-7 Parameter estimation error vs. number of iterations for four

different values of road noise, holding initial conditions constant,

for two independent noise inputs.

Initial conditions, a =0.3

Road noise, a =0.2, 0.1. 0.05. 0.025

State measurement noise, a =0.0

State derivative measurement noise, a =0.001
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One other observation concerning Figure G-7 is that the plateaus appear to be

quite distinct. There is a plateau at the parameter error value of 9 and another at

/ .o.

When two correlated inputs are used to excite the vehicle the resulting

parameter error measure is biased. This is shown in Figure 6-8. Notice that after

1000 iterations the identification process is producing estimates which are

becoming worse. This bias is the result of the input-output crosscorrelation.

Figure 6-9 illustrates the improved identifier performance when the the bias

elimination developed in Equations 6.12-6.14 are incorporated in the parameter

estimation algorithm. Using the bias elimination scheme, the parameter

measurement error approaches that of a single input shown in Figure 6-3. This

curve was made by setting P equal to 1000 along the diagonal.

E. COMPUTATIONAL AND STORAGE REQUIREMENTS

In Chapter IV it was found that the computational requirements of the

algorithm were within the capability of a microprocessor. This is not the case for

the eighth order system analyzed in this chapter. Also, since the parameters of

the fourth, sixth and eighth rows are less corrupted by noise, the algorithm could

stop searching for those parameters long before the parameters of the second row

are found. This capability can be accomplished by using the structure of this

identification approach. Recall that Equation 2.3, constructs the H(k) matrix by
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Figure 6-8 Parameter estimation error vs. number of iterations with correlated

road noise as the only form of excitation.

Initial conditions, a =0.0

Road noise, a =0.1

State measurement noise, a =0.0

State derivative measurement noise, a =0.005
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Figure 6-9 Parameter estimation error vs. number of iterations with correlated

road noise as the only form of excitation and bias elimination is used.

Initial conditions, a =0.0

Road noise, a =0.1

State measurement noise, a =0.0

State derivative measurement noise, a =0.005
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using disjoint state vectors. Thus, the identifier may be considered as four

separate identifiers, which are associated by the state vector alone.

This allows the algorithm to be broken into four separate scalar identifiers,

which eliminates the need to perform a matrix inversion. If each of the new,

smaller parameter vectors is denoted by 0'
. then the new algorithm is given by

e'[k) = e'(k-i) +g'[k)\z.(k) - x e'(k-i)\ (6.16)

P'(Jfc-l)x

9 (*) = — (6.17)
x P'(k-l)x + r.

P'(k) =
|
I-g'(k)x

T
}P'(k-l) (6.18)

where g'{k) is now the gain vector. The separation of the parameter vector will

require this algorithm to be performed four times during each iteration, but as a

row of parameters is identified it can be eliminated from the algorithm. This will

reduce the computational requirements and thus the cycle time.

Each time through the algorithm the microprocessor will perform 270

multiplications. 8 divisions. 255 additions. 344 index register increments, 277

loads, and 96 stores. Using the same operation times as in Chapter IV. the total

time required per shortened parameter vector is 3628 //seconds. Therefore, one

iteration requires 14,512 //seconds or 0.0145 seconds. The asynchronous algorithm

developed in this thesis does not depend on the time interval between

measurements. This will allow the algorithm to reduce the interval between

measurements as parameter rows are identified and dropped from the algorithm.

The memory requirement is 2800 bytes for all four algorithms.
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F. SUMMARY

Parameter identification in high order systems is fraught with peril. As the

number of parameters to be identified increases, so does the dimension of the

search space. This increase in the search volume results in plateauing. When the

noise added to the state derivative is large as in the case of road noise, then these

plateaus become very expansive, and it is not clear that identification is even

possible. However, in most applications the parameters of the body are probably

more important than those of the wheels.

The observant reader might have noticed that in none of the parameter

estimation error curve of this chapter, did the error reduce below about 5. In fact,

on several simulations not shown, the error did reach acceptable values. These

low errors were obtained when the initial conditions were very large and the noise

added to the measurements was very small.
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VII. SUMMARY AND CONCLUSIONS

A. INTRODUCTION

In the previous six chapters, the theoretical results of parameter identification

were presented, and applied to the problem of estimating the dynamic parameters

of a land vehicle. The simulation studies performed in the last four chapters

demonstrated the capabilities of each approach. In this chapter an overview of the

result is given, and suggestions for further study presented.

B. RESULTS

The batch-process least squares procedure of Chapter III was judged to be

impractical because it required the storage of all the data before the identification

process could begin. The recursive form of this algorithm is the Kalman filter

identifier without the theoretical insight of how to choose P(0).

The identification of the dynamic parameters of a land vehicle is possible with

the Kalman filter ide fier. The practicality of this approach is in question,

however. There are s< veral practical drawbacks to the identification scheme

presented here that make it extremely costly to implement. Most autonomous

vehicles have an inertial navigation system on board, thus the elements of the

state vector dealing with the vehicle bodies position, velocity, acceleration, and

their angular counterparts are available. These measurements will probably be
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quite accurate and have reasonable signal to noise ratios. The wheel positions,

velocities and accelerations are another matter. It is not likely that an

accelerometer would be mounted on each wheel to measure its acceleration. Each

wheel's acceleration could then be integrated to obtain its velocity, which in turn

could be integrated to find the wheel's position. It might be possible to find the

acceleration on each wheel with respect to the body with a less sophisticated

device than an accelerometer. which could then be added to the vehicle's

acceleration to find the inertial space acceleration on the wheel. In either case,

there is a requirement to develop the states of each wheel. On vehicle with

several wheels (more than four) this will become quite hardware intensive.

The stochastic gradient identifier using the steepest descent algorithm was

extremely susceptible to plateauing. The Lyapunov gain matrix produced better

results, but the R(k) matrix was correlated with the H(k) matrix which would

necessarily produce a bias. The extent of this bias was not analyzed.

The problem of plateauing observed in the last chapter, is unresolved.

Plateauing is quite common in least squares identification, or the Kalman filter

approach. This problem was also seen in the stochastic gradient algorithm to a

much worse degree. The algorithm did obtain acceptable estimates for the

parameters that were not corrupted by road noise. In the case of correlated

inputs, the scheme was able to identify the rear wheel parameters. If the center of

gravity of the vehicle is known, and the dynamic elements of the front and rear

wheels are the same, it should be possible to obtain the front wheel parameters
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from the rear wheel elements. In order to remove the correlate between the inputs

to the front and rear wheels, it was necessary to allow the time interval between

samples to vary. This variation in sampling interval allowed the system to take

measurements when when the rear wheel is over a point where a front wheel

measurement was taken. The problem of state measurement noise bias worsened

with the increase in state size. This is not surprising, but presents a severe

limitation to this form of identification. Two possible solutions to be investigated

are presented in the next section.

The scheme used to remove the correlation between the input and the state

was successful. The implementation of this scheme might prove difficult.

Whenever there is a requirement for an object to be over exactly one location at

the proper time there is not much room for error. The question of exactly how

accurate this timing must be. to obtain acceptable results, might best be answered

on a real vehicle.

The Kalman filter identifier possessed the best characteristic of the three

identification schemes chosen for analysis in this thesis, but it has a very limited

capability to perform in the scenario described in Chapter I. Under different

conditions it might perform much better. If for instance, several of the vehicles

dynamic elements were known, but some others were likely to change very slowly

throughout their operating life time, the number of parameters to be identified

would decrease. This decrease would allow the Kalman filter to function more

effectively.
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The least squares approach works very well when there are large initial

conditions, even in the presence of substantial measurement noise. The Kalman

filter identifier, being a recursive least squares algorithm, should perform as well

with the proper initial conditions. Thus, if the identifier is activated after large

initial conditions have been imparted to the vehicle, it should produce much

better results. This procedure would improve both the plateauing problem and

the state measurement noise bias.

C. FURTHER STUDY

This thesis dealt with a methodology and did not attempt to use the

parameters of an actual vehicle or the limitations of actual measurement

equipment. Before any experimentation is done on an actual vehicle with real

measurement equipment, several aspects of the work done in this thesis deserve

further investigation.

The present analysis shows that the signal to noise ratio of the vehicle state

sensors must be approximately 40 dB. This is an rather large signal to noise ratio

for this type of sensor. There are two possible solution to this problem which

should be investigated. The first is the extended Kalman filter identifier [Ref.

6:pp. 422-23]. Theoretically this approach estimates the state and identifies the

parameters. There are no perpetual motion machines, however, and the price for

this more complicated identifier will certainly be slower convergence. If on the
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other hand, the slower convergence is not excessive, this approach would then be

an excellent prospect for a vehicle identifier.

The other possible solution deals with the stochastic gradient approach. This

approach was unsuccessful using the Venter gain matrix, and the Lyapunov gain

matrix approach was abandoned because of theoretical inconsistencies. The

resulting effect of this inconsistency was not investigated. This approach may

perform somewhat better than the Kalman filter, even though theoretically

flawed, when moderate state measurement noise is present.

The investigation of parameter tracking was not completed in this thesis.

Although this area of analysis is easily interpolated from the previous study, no

real experimentation was done. Therefore, the study of the parameter tracking

problem, and which approach to use remains to be completed.

In chapter VI, the problem of plateauing was identified, but no analysis was

done to try to reduce the probability of its occurrence. The use of a

reinitialization scheme, such as the one discussed in Chapter IV, may allow the

identifier to break through plateaus. This would reduce this serious problem to

one of identification of plateaus, and decisions on how wide a plateau must be

before reinitialization is preformed.
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